3,019 research outputs found

    Incidental finding of lymphoma after septoplasty.

    Get PDF
    IntroductionSeptoplasty, or surgical correction of the deviated septum, is an elective, routinely performed rhinologic procedure to address nasal airway obstruction. In many cases, resected septal cartilage and bone fragments are sent for pathologic review, although there is no consensus on this practice. We reported two cases of incidentally diagnosed lymphoma after elective septoplasty and discussed clinical presentation, diagnosis, and management.MethodsRetrospective chart review of two patients who underwent septoplasty at a tertiary academic medical center and found to have incidental lymphoma based on histopathology.ResultsTwo patients who underwent septoplasty had an incidental diagnosis of lymphoma on pathologic analysis. One patient was noted to have an S-shaped septal deviation that produced bilateral nasal obstruction. She underwent a difficult septoplasty, in which the mucoperichondrial flap was firmly adherent to the underlying septum and bone. Final pathology demonstrated diffuse large B-cell lymphoma. She was treated with chemoradiation and remained free of disease at 59 months. The other patient had a history of nasal trauma, which produced left septal deviation. He underwent an uncomplicated septoplasty, with pathology that demonstrated low-grade B-cell lymphoma. Because there was no evidence of active disease, the decision was made to not treat and to observe the patient clinically.ConclusionsThis is the first reported series of septal lymphoma incidentally diagnosed on routine septoplasty. Although histopathologic review of specimens from routine nasal and sinus surgery is not routinely performed, this report highlighted the importance of this process, on a case-by-case basis, in detecting unexpected malignancies that otherwise were clinically silent

    Non-Gaussian features from the inverse volume corrections in loop quantum cosmology

    Full text link
    In this paper we study the non-Gaussian features of the primordial fluctuations in loop quantum cosmology with the inverse volume corrections. The detailed analysis is performed in the single field slow-roll inflationary models. However, our results reflect the universal characteristics of bispectrum in loop quantum cosmology. The main corrections to the scalar bispectrum come from two aspects: one is the modifications to the standard Bunch-Davies vacuum, the other is the corrections to the background dependent variables, such as slow-roll parameters. Our calculations show that the loop quantum corrections make fNLf_{{\rm NL}} of the inflationary models increase 0.1%. Moreover, we find that two new shapes arise, namely F1\mathcal F_{1} and F2\mathcal F_{2}. The former gives a unique loop quantum feature which is less correlated with the local, equilateral and single types, while the latter is highly correlated with the local one.Comment: matched to the published version. 30 pages, 4 figure

    Asymptotics of a discrete-time particle system near a reflecting boundary

    Full text link
    We examine a discrete-time Markovian particle system on the quarter-plane introduced by M. Defosseux. The vertical boundary acts as a reflecting wall. The particle system lies in the Anisotropic Kardar-Parisi-Zhang with a wall universality class. After projecting to a single horizontal level, we take the longtime asymptotics and obtain the discrete Jacobi and symmetric Pearcey kernels. This is achieved by showing that the particle system is identical to a Markov chain arising from representations of the infinite-dimensional orthogonal group. The fixed-time marginals of this Markov chain are known to be determinantal point processes, allowing us to take the limit of the correlation kernel. We also give a simple example which shows that in the multi-level case, the particle system and the Markov chain evolve differently.Comment: 16 pages, Version 2 improves the expositio

    Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments

    Full text link
    We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic fields or two nanomechanical oscillators in the quantum domain. We use quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for the bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.Comment: 10 two-column pages, 8 figures, to appear in Phys. Rev.

    Nonequilibrium Reweighting on the Driven Diffusive Lattice Gas

    Full text link
    The nonequilibrium reweighting technique, which was recently developed by the present authors, is used for the study of the nonequilibrium steady states. The renewed formulation of the nonequlibrium reweighting enables us to use the very efficient multi-spin coding. We apply the nonequilibrium reweighting to the driven diffusive lattice gas model. Combining with the dynamical finite-size scaling theory, we estimate the critical temperature Tc and the dynamical exponent z. We also argue that this technique has an interesting feature that enables explicit calculation of derivatives of thermodynamic quantities without resorting to numerical differences.Comment: Accepted for publication in J. Phys. A (Lett.

    Evidence for a Role of Oxidative Stress in the Carcinogenicity of Ochratoxin A

    Get PDF
    The in vitro and in vivo evidence compatible with a role for oxidative stress in OTA carcinogenicity has been collected and described. Several potential oxido-reduction mechanisms have been identified in the past. More recently, the possibility of a reduction of cellular antioxidant defense has been raised as an indirect source of oxidative stress. Consequences resulting from the production of oxidative stress are observed at different levels. First, OTA exposure has been associated with increased levels of oxidative DNA, lipid, and protein damage. Second, various biological processes known to be mobilized under oxidative stress were shown to be altered by OTA. These effects have been observed in both in vitro and in vivo test systems. In vivo, active doses were often within doses documented to induce renal tumors in rats. In conclusion, the evidence for the induction of an oxidative stress response resulting from OTA exposure can be considered strong. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Altogether, the data reviewed above support the application of a threshold-based approach to establish safe level of dietary human exposure to OTA

    Angular position of nodes in the superconducting gap of YBCO

    Full text link
    The thermal conductivity of a YBCO single crystal has been studied as a function of the relative orientation of the crystal axes and a magnetic field rotating in the Cu-O planes. Measurements were carried out at several temperatures below T_c and at a fixed field of 30 kOe. A four-fold symmetry characteristic of a superconducting gap with nodes at odd multiples of 45 degrees in k-space was resolved. Experiments were performed to exclude a possible macroscopic origin for such a four-fold symmetry such as sample shape or anisotropic pinning. Our results impose an upper limit of 10% on the weight of the s-wave component of the essentially d-wave superconducting order parameter of YBCO.Comment: 10 pages, 4 figure

    How to Optimally Constrain Galaxy Assembly Bias: Supplement Projected Correlation Functions with Count-in-cells Statistics

    Full text link
    Most models for the connection between galaxies and their haloes ignore the possibility that galaxy properties may be correlated with halo properties other than mass, a phenomenon known as galaxy assembly bias. Yet, it is known that such correlations can lead to systematic errors in the interpretation of survey data. At present, the degree to which galaxy assembly bias may be present in the real Universe, and the best strategies for constraining it remain uncertain. We study the ability of several observables to constrain galaxy assembly bias from redshift survey data using the decorated halo occupation distribution (dHOD), an empirical model of the galaxy--halo connection that incorporates assembly bias. We cover an expansive set of observables, including the projected two-point correlation function wp(rp)w_{\mathrm{p}}(r_{\mathrm{p}}), the galaxy--galaxy lensing signal ΔΣ(rp)\Delta \Sigma(r_{\mathrm{p}}), the void probability function VPF(r)\mathrm{VPF}(r), the distributions of counts-in-cylinders P(NCIC)P(N_{\mathrm{CIC}}), and counts-in-annuli P(NCIA)P(N_{\mathrm{CIA}}), and the distribution of the ratio of counts in cylinders of different sizes P(N2/N5)P(N_2/N_5). We find that despite the frequent use of the combination wp(rp)+ΔΣ(rp)w_{\mathrm{p}}(r_{\mathrm{p}})+\Delta \Sigma(r_{\mathrm{p}}) in interpreting galaxy data, the count statistics, P(NCIC)P(N_{\mathrm{CIC}}) and P(NCIA)P(N_{\mathrm{CIA}}), are generally more efficient in constraining galaxy assembly bias when combined with wp(rp)w_{\mathrm{p}}(r_{\mathrm{p}}). Constraints based upon wp(rp)w_{\mathrm{p}}(r_{\mathrm{p}}) and ΔΣ(rp)\Delta \Sigma(r_{\mathrm{p}}) share common degeneracy directions in the parameter space, while combinations of wp(rp)w_{\mathrm{p}}(r_{\mathrm{p}}) with the count statistics are more complementary. Therefore, we strongly suggest that count statistics should be used to complement the canonical observables in future studies of the galaxy--halo connection.Comment: Figures 3 and 4 show the main results. Published in Monthly Notices of the Royal Astronomical Societ
    corecore